[Solutions] Introduction to linear algebra (Gilbert Strang)

Solutions of Problem Set 2.2 in Introduction to linear algebra (Gilbert Strang)

This is not the formal. This is my personal collection of solutions.

海外からの閲覧が多いため主に英語です
世界標準MIT教科書 ストラング:線形代数イントロダクション(ストラング・ギルバート)
Introduction to Linear Algebra 5th Edition (Gilbert Strang)

2.2 The Idea of Elimination

Problem Set 2.2

備忘のためなので間違っているかもしれません。もし見つけたらご指摘いただけると幸いです。
If you find any mistakes, please comment.

1-10 are about elimination on 2 by 2 systems.

1
Write down the upper triangular system.

2
Solve the triangular system.

3
Find multiplier to make the linear system upper triangular.

4
Find multiplier to make the linear system upper triangular.

5
Singular system

6
Singular system

7
Permanent or temporary elimination breakdown

8
Find cases of elimination break down.

9
Condition of b to have solution

10
Draw two lines to find the solution.

11-20 study elimination on 3 by 3 systems.

11
A system of linear equations can’t have exactly two solutions, why?

12
Solve 3 by 3 linear system.

13
Solve 3 by 3 linear system.

14
Row exchange, singular system.

15
Row exchange, missing pivot

16
2 Row exchange, break down after row exchange

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です